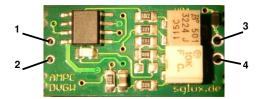


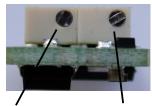
The AMPCON converts a photocurrent into an output current between 4 and 20mA. The module is designed for integration into 4-20mA databusses.


The present module works with a low gain factor and converts a photocurrent of 250μ A (adjustable +/-35%) to an output of 20mA. This means, a current higher than 250μ A will cause saturation.

Other modules with medium gain (AMPCON_MED, up to 2,5 μ A) and high gain (AMPCON_HI, up to 18nA) are available. Alternatively, please refer to the below instruction for changing the gain.

Input solder points	Photodiode Anode = positive terminal of the photodiode
	Photodiode Cathode = negative terminal of the photodiode
Power supply = output	A voltage of 24V is to be applied between V+ and GND. The resulting
terminal solder points	current between 4 and 20mA is the signal, which is proportional to the
	photocurrent.
Dimensions	W x L x H = 13 x 26 x 8mm
Operating temperature	-2080℃
Storage temperature	-4080℃
The signal offset and the amplification factor are adjustable with potentiometers. (see description)	
RoHS-compliant to 2002/95/EG.	

Connection:


Input solder points

Power supply solder points

1 Photodiode anode 3 V+ power supply

2 Photodiode cathode 4 GND power supply

Offset and gain fine adjustment:

gain adjustment turn left to raise the gain turn right to lower the gain offset adjustment turn right to raise the offset turn left to lower the offset

How to change the gain:

 R_{F} and C_{F} might have another appearance than in the picture.

To change the gain (measurement range) in a larger scale, please change the feedback resistor R_{F} . (the present value is 10 $k\Omega)$

To calculate $R_{\mbox{\tiny Fnew}}$ for the new resistor, please use this formula:

 $R_{Fnew}(in \ k\Omega)=2160/I_{max}(in \ \mu A)$

 I_{max} is the max. measurable photocurrent. It is adjustable +/- 35% with the potentiometer. The capacitor C_F (the default value is 1 μ F) is influencing the time constant τ of the measurement system. The present time constant is 10ms. It is calculated with the formula: τ (in ms= C_F (in μ F)* R_F (in $k\Omega$)

maximum ratings $5k\Omega < R_{Fnew} < 3G\Omega$ and $\tau > 1$ ms

Rev 1.1 page 1 [1]