

Absolute Stand Alone Inclinometer

0751 Dual axis Analog output

FEATURES

- √ Silicon 3D MEMS sensor
- $\sqrt{\text{Dual}}$ axis inclination measurement (X and Y) $\sqrt{\text{Measuring ranges } \pm 30^{\circ} \text{ and } \pm 90^{\circ}}$
- √0.1° Accuracy
- $\sqrt{0.0035^\circ}$ resolution (10 Hz BW, analog output)
- $\sqrt{\rm Sensing}$ element controlled over damped
- $\sqrt{\text{Frequency response (-3dB 18 Hz)}}$
- $\sqrt{\rm Robust}$ design, high shock durability (20000g) √ Unrelated 7....35V supply
- √ RoHS compliant

For Customized product please contact The Fredericks Company

BENEFITS

- √ Excellent long term stability
- $\sqrt{\text{Sensing element controlled frequency response}}$
- √ Outstanding shock durability
- √ Harsh environment robustness

APPLICATIONS

- $\sqrt{\rm Platform}$ leveling and stabilization
- $\sqrt{360^\circ}$ vertical orientation measurement
- √ Leveling instruments
- √ Cabin leveling

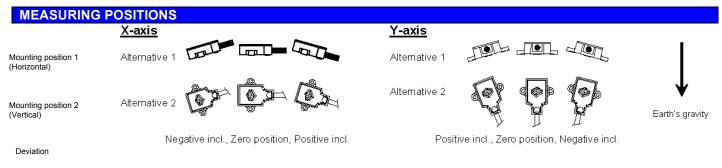
Note 4. The cross-axis sensitivity determines how much inclination, perpendicular

Note 5. Mounting position should be calibrated. See measuring positions

to the measuring axis, couples to the output

√ Solar panel control systems

ELECTRICAL CHARACTERISTICS						
Parameter	Condition	Min.	Тур	Max.	Units	
Supply voltage		7	16	35	٧	
Current consumption			5	8	mA	
Analog resistive output load	Vout to Vdd or GND	10			kOhm	
Analog capacitive output load	Vout to Vdd or GND			20	nF	
Start-up delay	Reset and parity check			10	ms	


PERFORMANCE CHARACTERISTICS		0751-9002-99	0751-3002-99	
Parameter	Condition			Units
Measuring range (1)	Nominal	+/-90	+/-30	0
		_/-1	+/-0.5	g
Supply voltage		735	735	V
Offset (Output at 0g) (2,5)		2.5	2.5	V
Offset calibration error	Max deviation	+/-1	+/-1	0
Sensitivity		2	4	V/g
	Between 01°	35	70	mV/°
Sensitivity calibration error		+/-1.5	+/-1.5	%
Offset temperature	-2585°C	+/-0.6	+/-0.6	0
error	070°C	+/-0.2	+/-0.2	0
Sensitivity temperature (5)	-2585°C	-1.5+0.5	-1.5+0.5	%
dependency	070°C	-0.8+0.3	-0.8+0.3	%
Typical non-linearity	Sinus output	N/A	+/-0.1	٥
Frequency response (3)	-3dB LP ⁽²	18	18	Hz
Ratio error	Vdd = 4.755.25V			%
Cross-axis sensitivity (4)	Max.	3	3	%

Typical values @ ambient temperature unless otherwise specified.

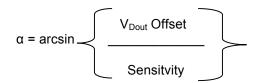
Note1. The measurement is limited by the sensitivity and offset.

Note2. Offset specified as Output @ 0°.

Note 3. The frequency response is determined by the sensing element's internal gas dampening The output has true DC (OHz) response.

Figure 1. Positions

Notes:


» It is important that the part is parallel to the mounting plane, and that the output equals zero value when sensor is in the zero position

» Zero position: Please note the picture above, which provides information on how the output of the accelerometer behaves in different circumstances when assembled. Please also note that you can rotate the part around the measuring plane for optimum mounting location

Voltage to Angle Conversion

Analog output can be transferred to angle using the following equation for conversion

Where: Offset = output of the device at 0° inclination, Sensitivity is the sensitivity of the device and V_{Dout} is the output of the 0751. The nominal offset is 2.5 V and the sensitivity is 4 V/g for the 0751-3002 and 2 V/g for the 0751-9002.

ELECTRICAL CONNECTIONS

SOFTWARE LEVELS

Wire color	Name	Function
Blue	GND	Ground
Red	Vdd	Power supply
Yellow	Out X	X-axis output
Green	Out Y	Y-axis output
White	NC	Not Connected

MECHANICAL SPECIFICATIONS

30 cm

MOUNTING

Cable type: PUR black Cable diam.: Leads: Total weight: Protection class:

Cable length:

Housing:

Mounting

Oc UL/CSA listed, $6\pm 0.2mm$ $5 \times 0.14mm^2$ Approx. 60 grams IP66 Zinc casting with passivation The sensor module is to be mounted on a flat and smooth surface with 2 screws, dimension M4. Mounting torque 5 ±1Nm