
SiC based UV-Index photodetector with integrated amplifier

1/4

GENERAL FEATURES

- SiC based UV-Index photodetector in TO5 housing with diffusor
- spectral response compliant to ISO 17166
- o... 5 V voltage output
- 1 UVI results a voltage of approx. 170 mV
- \bullet Applications: UV-Index measurement with very small measurement uncertainty less than 5 %

What is a TOCON?

A TOCON is a 5 Volt powered UV photodetector with integrated amplifier converting UV radiation into a 0...5 V voltage output. The V_{out} pin of the TOCON can be directly connected to a controller, a voltmeter or any other data analyzing device with voltage input.

Information about the UV-Index (UVI)

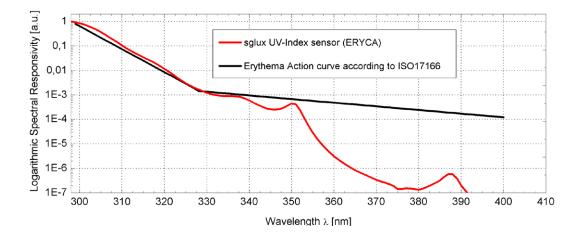
The UV-Index is an international standard measurement of how strong the ultraviolet (UV) radiation from the sun is at a particular place on a particular day. It is a scale primarily used in daily forecasts aimed at the general public. The UV-Index is calculated by integrating the sun's UV spectrum multiplied with the Erythema action curve (see spectral responsivity). That integral is divided by 25 mW/m^2 to generate a convenient index value, which becomes essentially a scale of o to 10. The Erythema action curve is a wavelength resolved measure of the sunburn danger. It is maximised at 297 nm (UVB) and then strongly decreases towards UVA radiation.

Literature: A. F. McKinlay and B. L. Diffey, "A reference action spectrum for ultraviolet induced erythema in human skin" CIE Journal, 6-1, 17-22 (1987)

NOMENCLATURE

TOCON_	ABC, A, B, C, blue or GaP	1 10
	Spectral response	Irradiance limits (V _{supply} =5V, $\lambda = \lambda_{peak}$)
	ABC = broadband	1 = .,8 pW/cm ² 18 nW/cm ²
	$\lambda_{\rm max} = 290 {\rm nm} \lambda_{\rm S10\%} = 227 {\rm nm} \dots 360 {\rm nm}$	2 = 18 pW/cm ² 180 nW/cm ²
	A = UVA $λ_{max} = 331 \text{ nm}$ $λ_{S_{10}\%} = 309 \text{ nm} \dots 367 \text{ nm}$	3 = 180 pW/cm^2 $1.8 \mu\text{W/cm}^2$
	B = UVB	$4 = 1.8 \text{ nW/cm}^2 \dots 18 \mu \text{W/cm}^2$
	$\lambda_{max} = 280 \text{ nm} \lambda_{S10\%} = 243 \text{ nm} \dots 303 \text{ nm}$	5 = 18 nW/cm^2 $180 \mu\text{W/cm}^2$
	C = UVC	$6 = 180 \text{ nW/cm}^2 \dots 1.8 \text{ mW/cm}^2$
	$\lambda_{max} = 275 \text{ nm} \lambda_{S10\%} = 225 \text{ nm} \dots 287 \text{ nm}$	7 = 1.8 μW/cm ² 18 mW/cm ²
	Blue = blue light $\lambda_{max} = 445 \text{ nm} \lambda_{S10\%} = 390 \text{ nm} \dots 515 \text{ nm}$	8 = 18 μW/cm ² 180 mW/cm ²
	GaP = UV + VIS	9 = 180 µW/cm ² 1.8 W/cm ²
	$\lambda_{max} = 445 \text{ nm}$ $\lambda_{S10\%} = 190 \text{ nm} \dots 570 \text{ nm}$	10 = 1.8 mW/cm ² 18 W/cm ²
	E = UV-Index spectral response according to ISO 17166	2 = measurement range UVI up to 30

SiC based UV-Index photodetector with integrated amplifier

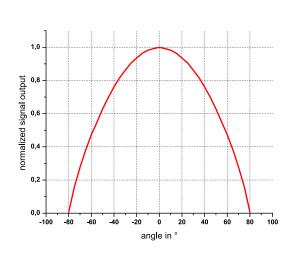


2/4

SPECIFICATIONS

Parameter	Symbol	Value	Unit
Spectral Characteristics			
Approx. Sensitivity (UNIT IS NOT CALIBRATED)	S _{max}	170	mV/UVI
Visible Blindness (S _{max} /S _{>405nm})	VB	> 10 ¹⁰	-
General Characteristics (T=25°C, V _{supply} =+5 V)			
Supply Voltage	V _{Supply}	2.5 5	V
Saturation Voltage	V _{Sat}	V _{Supply} - 5%	V
Dark Offset Voltage	V _{Offset}	50	μV
Temperature Coefficient at Peak	T _c	< -0.3	%/K
Current Consumption	I	150	μA
Bandwidth (-3 dB)	В	15	Hz
Risetime (10-90%)	t _{rise}	0.182	S
(OTHER RISETIMES ON REQUEST)			
Maximum Ratings			
Operating Temperature	T _{opt}	-25 +85	°C
Storage Temperature	T _{stor}	-40 +100	°C
Soldering Temperature (3s)	T _{sold}	300	°C

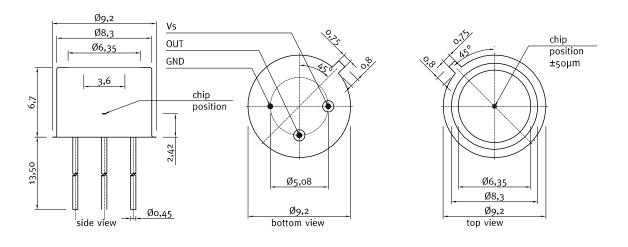
NORMALIZED SPECTRAL RESPONSIVITY



SiC based UV-Index photodetector with integrated amplifier

sglux The UV Experts

FIELD OF VIEW



Measurement Setup:

lamp aperture diameter: 10 mm distance lamp aperture to second aperture: 17 mm second aperture diameter: 10 mm distance second aperture to detector: 93 mm

pivot level = top surface of the detector window

DRAWING

SiC based UV-Index photodetector with integrated amplifier

4/4

APPLICATION NOTE FOR TOCONS

The TOCONs need a supply voltage of $V_{supply} = 2.5 \dots 5 V_{DC}$ and can be directly connected to a controller or voltmeter. Please note that the theoretic maximum signal output is always a little less (approx. 5 %) than the supply voltage. To learn more about perfect use of the TOCONs please refer to the TOCON FAQ list published at www.sglux.com.

CAUTION! Wrong wiring leads to destruction of the device.

For easy setup of the device please ask for a TOCON starter kit.

Miniature steel housing with M12x1 thread for the TOCON series

- - Optional feature for all TOCON detectors
 - Robust stainless steel M12x1 thread body, length 32 mm
 - Integrated sensor connector (Binder 4-Pin plug) with 2 m connector cable
 - Easy to mount and to connect

Miniature PTFE housing with M12x1 thread for the TOCON series

- Optional feature for all TOCON detectors without concentrator lens
- Teflon (PTFE) M12x1 thread body, length 31 mm
- Wide field of view, dirt-repellant, water proof at wet side (IP 68)
- Integrated sensor connector (Binder 4-Pin plug) with 2 m connector cable
- Easy to mount and connect, cleanable

The PTFE housing reduces the signal output by approx. 95%. Please consider this while selecting the TOCON's sensitivity range.

Plastic probes

- Optional feature for all TOCON detectors
- UV probes in small plastic housings with a TOCON inside
- Customized housings available
- Easy to mount and to connect
- Integrated sensor connector (Binder 4-Pin plug)
- Cable available

Water pressure proof TOCON housing

- Optional feature for all TOCON detectors without concentrator lens
- G1/4" thread, 10 bar water pressure proof
- Customized housings available
- Easy to mount and to connect
- Integrated sensor connector (Binder 5-Pin plug)
- Cable available

