SG01L–E5

high precision SiC based UV-Index photodiode without cosine correction

GENERAL FEATURES

Properties of the SG01L-E5 UV photodiode

- \bullet ISO 17166 compliant UV-Index photodiode, uncertainty less than 5%
- Active Area A = 1.0 mm², PTB reported high chip stability
- TO5 hermetically sealed metal housing, 1 isolated pin and 1 case pin
- 1 UVI (2.5 μ W/cm²) = 2.5 nA. This item needs an appropriate amplifier.
- This item needs an appropriate cosine correction to meet the Iso 17166 requirements. Alternatively our product SGo1L-E5D (including a diffusor) can be applied.

About the material Silicon Carbide (SiC)

SiC provides the unique property of extreme radiation hardness, near-perfect visible blindness, low dark current, high speed and low noise. These features make SiC the best available material for visible blind semiconductor UV detectors. The SiC detectors can be permanently operated at up to 170°C (338°F). The temperature coefficient of signal (responsivity) is also low, < 0.1%/K. Because of the low noise (dark current in the fA range), very low UV radiation intensities can be measured reliably.

Information about the UV-Index (UVI)

The UV-Index is an international standard measurement of how strong the ultraviolet (UV) radiation from the sun is at a particular place on a particular day. It is a scale primarily used in daily forecasts aimed at the general public. The UV-Index is calculated by integrating the sun's UV spectrum multiplied with the Erythema action curve (see spectral response). That integral is divided by 25 mW/m^2 to generate a convenient index value, which becomes essentially a scale of o to 10. The Erythema action curve is a wavelength resolved measure of the sunburn danger. It is maximised at 297 nm (UVB) and then strongly decreases towards UVA radiation. Literature: A. F. McKinlay and B. L. Diffey, "A reference action spectrum for ultraviolet induced erythema in human skin" CIE Journal, 6-1, 17-22 (1987)

NOMENCLATURE

SG01				
S, M, D, L, XL	nothing, A, B, C or E	18, 18ISO90, 18S, 5, 5ISO90	nothing, Lens, MEGA, GIGA	
Chip area	Spectral response	Housing	Special	
S 0.06 mm ²	nothing = broadband $\lambda_{max} = 280 \text{ nm}$ $\lambda_{S10\%} = 221 \text{ nm} \dots 358 \text{ nm}$	18 2-pin TO18 housing, h = 5.2 mm, 1 pin isolated, 1 pin grounded	Lens with concentrating lens, TO5 only	
M 0.20 mm ²	A = UVA $λ_{max} = 331 \text{ nm}$ $λ_{S10\%} = 309 \text{ nm} \dots 367 \text{ nm}$	18ISO90 3-pin TO18 housing, h = 5.2 mm, 2 pins isolated, 1 pin grounded	iens, ros only	
D 0.50 mm²	B = UVB $λ_{max} = 280 \text{ nm}$ $λ_{S10\%} = 231 \text{ nm} \dots 309 \text{ nm}$	185 2-pin TO18 housing, h = 3.7 mm, 1 pin isolated, 1 pin grounded	MEGA with attenuator up to 0.5 W/cm ²	
L 1.00 mm ²	C = UVC $\lambda_{max} = 275 \text{ nm}$ $\lambda_{S10\%} = 225 \text{ nm} \dots 287 \text{ nm}$	5 2-pin TO5 housing, h = 4.3 mm for broadband; h = 6.7 mm for filtered UVA, UVB, UVC, UVI	GIGA	
XL 7.60 mm²	E = UV-Index spectral response according to ISO17166	51SO90 3-pin TO5 housing, h = 4.2 mm, 2 pins isolated, 1 pin grounded	with attenuator up to 7 W/cm ²	

sg_{LUX} GmbH | Richard-Willstätter-Str. 8 | D–12489 Berlin | Tel. +49 30 5301 5211 | welcome@sglux.de | www.sglux.de Rev. 6.0 Due to our strive for continuous improvement, specifications are subject to change within our PCN policy according to JESD46C.

SG01L–E5

high precision SiC based UV-Index photodiode without cosine correction

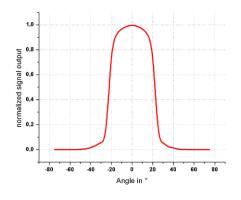
2/4

SPECIFICATIONS

Parameter	Symbol	Value	Unit
Spectral Characteristics			
Approx. Responsivity (UNIT IS NOT CALIBRATED)	S _{max}	0.10	AW -1
Visible Blindness (S _{max} /S _{>405nm})	VB	> 10 ¹⁰	-
General Characteristics (T=25°C)			
Active Area	А	1.0	mm²
Dark Current (1V reverse bias)	ld	3.3	fA
Capacitance	С	250	pF
Short Circuit (1 UVI)	lo	2.5	nA
Temperature Coefficient	Tc	< 0.1	%/K
Maximum Ratings			
Operating Temperature	T _{opt}	-55 +170	°C
Storage Temperature	T_{stor}	-55 +170	°C
Soldering Temperature (3s)	T_{sold}	260	°C
Reverse Voltage	V_{Rmax}	20	V

NORMALIZED SPECTRAL RESPONSIVITY & ERYTHEMA ACTION CURVE

sg_{LUX} GmbH | Richard-Willstätter-Str. 8 | D–12489 Berlin | Tel. +49 30 5301 5211 | welcome@sglux.de | www.sglux.de Rev. 6.0 Due to our strive for continuous improvement, specifications are subject to change within our PCN policy according to JESD46C.

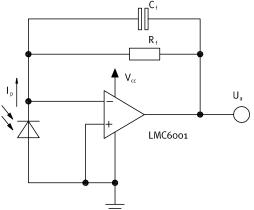

SG01L-E5

high precision SiC based UV-Index photodiode without cosine correction

sglux The UV Experts

3/4

FIELD OF VIEW



Measurement Setup

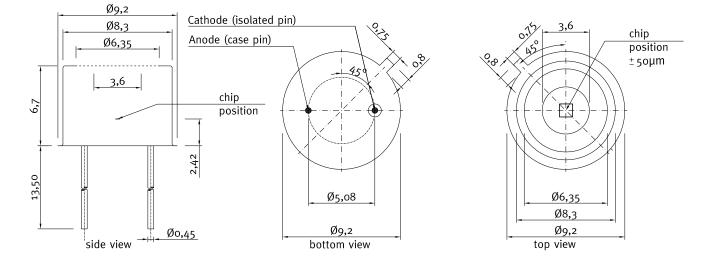
lamp aperture diameter: 10 mm distance lamp aperture to second aperture: 17 mm second aperture diameter: 10 mm distance second aperture to detector: 93 mm

pivot level = top surface of the photodiode window

DRAWINGS

Calculations and Limits:

 $U_a = I_p x \ R_f = o \ ... \ \sim \ V_{cc}$


U_{a,max} depends on load and amplifier type

$$\begin{split} R_{f} &= 10k\Omega ... \sim 10G\Omega, \ C_{f} \geq 3pF \\ \text{Recommendation: } R_{f}x \ C_{f} \geq 10^{-3}s \\ I_{p,max} &= U_{a,max} \div R_{f} \end{split}$$

Bandwidth = DC ...

$$\frac{1}{2\pi \text{ x } \text{ R}_{\text{f}} \text{ x } \text{ C}_{\text{f}}}$$

Example: I_p = 20nA, R_f =100M Ω , C_f =100 pF U_a = 20 x 10⁹A x 100 x 10⁶ Ω = 2V

sg*LUX* GmbH | Richard-Willstätter-Str. 8 | D–12489 Berlin | Tel. +49 30 5301 5211 | welcome@sglux.de | www.sglux.de Rev. 6.0 Due to our strive for continuous improvement, specifications are subject to change within our PCN policy according to JESD46C.

SG01L-E5

high precision SiC based UV-Index photodiode without cosine correction

APPLICATION NOTE FOR PHOTODIODES

For correct reading of the photodiode the current (and NOT the voltage) must be analyzed. This requires a short circuiting of the photodiode. Usual approaches are using a **Picoamperemeter** or a **transimpedance amplifier** circuit as shown on page 3.

UPGRADE TO A TOCON OR A PROBE FOR UV INDEX MEASUREMENTS

TOCONs = UV sensors with integrated amplifier

- SiC based UV hybrid detector with amplifier (0-5V output),
- No additional amplifier needed, direct connection to controller, voltmeter, etc.
- With erythema filter, measures intensities up to 30 UVI

TOCON_UVI = miniature sensor probe

- UV-Index hybrid sensor (TOCON) in a PTFE housing (with G1/4" thread)
- EMC safe, with erythema filter
- Integrated sensor connector (Binder 4-Pin plug) with 2m connector cable
- Easy to mount and connect

UV-Cosine_UVI sensor probe (ERYCA)

- Special water proof and dirt-repellent housing for outdoor measurements
- Housing made of PTFE with cosine FOV, with erythema filter
- Different electronic outputs configurable (voltage, current, USB, CAN)
- Good EMC safety

CALIBRATION SERVICE

Before using this photodiode a calibration is needed. Our ISO9001:2015 - certified calibration laboratory offers a PTB traceable calibration of the photodiode. Our calibration laboratory is traceable to PTB (The National Metrology Institute of Germany) and works according to guideline DAkkS-DKD-MB-3 and CIE 220:2016.

